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We propose a method to study the director distribution in a nematic liquid crystal confined in a slab
geometry. It is based on the measurement, by NMR spectroscopy, of the Saupe ordering matrices of a collec-
tion of biaxial solute molecules dissolved in the confined nematic liquid crystal of interest. Due to the com-
bined action of the surface anchoring and magnetic field interactions, the director is generally not uniformly
aligned within the cell. Consequently, the resulting Saupe ordering matrices may be considered as weighted
sums of the corresponding Saupe ordering matrices measured in the bulk nematic phase, and modulated by the
director distribution. The determined Saupe ordering matrices may then be taken as the set of data in a fitting
process where the fitting function, whose form is deduced from molecular mean field and continuum theories,
is dependent on the director distribution; the angle that the director forms with the plain surfaces and the
corresponding derivative at the surfaces are taken as fitting parameters. The methodology is preliminarily
tested on the virtual nematic phase formed by the Lebwohl-Lasher lattice model, confined between two plain
surfaces favoring planar anchoring, and where a number of model cuboidal solutes has been dissolved. We
comment on the implemention of the method when applied to real experimental systems.
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Liquid crystals encompass a number of complex
fluid systems of both fundamental and applicative interest.
In particular, research on thermotropic nematic liquid crys-
tals has been stimulated since the second half of the 20th
Century by the usage that such materials have met in
optoelectronic devices. The basic unit of the latter is a cell
in which a nematic liquid crystal is kept between two solid
surfaces and subject to external applied fields. Because the
latter are generally competing with surface anchoring inter-
actions, the director orientation at the interior of the cell
is inhomogeneously distributed. It becomes of interest
to determine such a distribution experimentally. One
method involves the combined application of continuum
theory �1� and deuterium NMR spectroscopy �2�, as shown
in Ref. �3�.

A possible alternative method, also suitable to be used in
a mutually synergistic fashion with respect to the approach
of Ref. �3�, can be in principle conceived to treat the prob-
lem. It is based on that well established �4� area of liquid
crystal research that concerns the study of the orientational
ordering of solutes in nematic solvents �2�. In an experiment
of this type, the Saupe ordering matrix, S, of a solute dis-
solved in a nematic liquid is determined through the analysis
of its NMR spectrum. In a bulk phase, the elements of S are
defined as follows:
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In the above expression, cos �� is the direction cosine that
the � axis of the molecular reference frame forms with the
direction of the magnetic field, B, ��� is the Krönecker sym-
bol, and �� indicate a statistical average. P�� � n̂� is the prob-
ability density to find a solute molecule in the orientational
state defined by the set of Euler angles �, with respect to the
laboratory reference frame. P�� � n̂� depends on the affinity
between the solute and the orienting nematic field, the latter
being described by the director n̂. In a bulk phase, the direc-
tion of B coincides with the nematic phase director n̂, or it is
perpendicular to the latter, depending on whether the sample
is of positive or negative diamagnetic anisotropy, ��, respec-
tively. In a nematic liquid confined between two plates, how-
ever, the angle 	 formed by the direction of B with n̂ is, in
general, not the same across the cell, but rather a function of
z �		�z��. The experimentally determined S is expected to
reflect this situation. In fact, its elements should be the fol-
lowing average:

S�� = �
0

L

dz
�z�S���z� , �2�

where L is the thickness of the cell, 
�z� is the probability
density to find the solute molecule at a position comprised
between z and z+dz along the direction perpendicular to the
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two surfaces, and S���z� is the �� element of the corre-
sponding local Saupe ordering matrix. If we make the rea-
sonable assumptions that the solute molecule explores homo-
geneously all the confined sample and that the local Saupe
ordering matrix depends solely on the affinity between the
solute molecule and the local director n̂�z�, we may write
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Furthermore, we may assume that the shape of P�� � n̂�z�� is
unaffected by the confinement, and therefore it can be taken
equal to that determined in the bulk phase at the same tem-
perature T. Exploiting Eq. �1� and rotational transformation
properties, Eq. �3� can be made explicit in the following
form:
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where Ri��	�z�� is the i� element of the R rotation matrix
depending on 	�z�. Without loss of generality, we can take

P���n̂� � exp	−
U���n̂�

kBT

 , �5�

where kB is the Boltzmann constant and U�� � n̂� is an effec-
tive potential. It has been shown by several authors �2� that,
in the particular nematic phase called magic mixture �MM�,
U�� � n̂� can be described as effectively depending only on
the size and shape of the solute. It has turned out �5� that a
simple yet very effective description of the ordering of a
biaxial solute in the MM solvent is achieved by modeling the
solute as a parallelepiped of dimensions l, w, and b, respec-
tively lying along the directions z�, x�, and y� of the solute
frame of reference �see Fig. 1 in Ref. �5��, and taking
U��� � n̂�� as follows:

U���n̂� = − q�
r=1

6

rP2�k̂r · n̂�; �6�

q is a positive solute-solvent coupling parameter dependent
on temperature, and whose physical dimensions are those of
an energy per length, r is the length of the dimension r, and

k̂r its direction. Basically, the set of the geometrical ratios
between two solute dimensions dictates the shape of the
curve Sx�x�-Sy�y� versus Sz�z�, S�� being the �� element of the
solute Saupe ordering matrix measured in the bulk nematic
phase. The actual position along this curve depends pecu-
liarly on the temperature and on the nature of the solute-
solvent pair; these three variables are effectively condensed
in the parameter q. Deviations from a MM behavior can be
effectively accounted for by including additional �e.g., elec-

trostatic� interactions in the effective potential, as described,
e.g., in Ref. �6�. On the basis of the results presented in Ref.
�7�, it is plausible that Eq. �6� holds also for magic solutes
�i.e., relatively inert molecules like cycloalkanes� dissolved
in any nematic solvents.

By combining Eqs. �5� and �6� with Eqs. �3� and �4�, we
obtain an expression of S�� that depends functionally on
n̂�z�. Therefore, we may think to use the experimentally de-
termined Saupe ordering matrices of a collection of biaxial
solute molecules dissolved in a confined nematic solvents as
a set of data to determine n̂�z� by a fitting process. This could
be achieved if an analytical expression for n̂�z� is available
that contains a few fitting parameters. To this end, we can
resort to continuum theory �1�. In the case of the splay ge-
ometry of Fig. 1, for which the director n̂�z� can be written
as (cos ��z� ,0 , sin ��z�), continuum theory states that the di-
rector profile at the interior of the cell is determined by in-
tegrating the following differential equation �1�:
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d2��z�
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with K1 and K3 the splay and bend elastic constants, together
with the two boundary conditions

��0� = ��L� = �0 �8�

and
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We may take as the sought expression for n̂�z� that obtained
by integrating Eq. �7� with Eqs. �8� and �9� as boundary

conditions, �0 and �0
˙ playing the role of fitting parameters.

FIG. 1. The nematic liquid crystal solution considered in this
work: it consists of a nematic solvent confined between two parallel
surfaces, subject to both anchoring and magnetic field interactions,
and that hosts solute molecules �e.g., an idealized para-dichloro-
benzene�. Because of the competition between anchoring and mag-
netic field interactions, the director is expected to be inhomoge-
neously aligned at the interior of the cell.
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Before embarking on a series of measurements on real
biaxial solutes dissolved in confined nematic solvents, we
have decided to test the above-described methodology on a
virtual system. We have considered �x��y ��z rotors at the
sites of a cubic lattice and interacting through the Lebwohl-
Lasher pair potential �8�. This system is confined between
two plain surfaces that preferentially orient the rotors at the
surfaces along the x direction of the laboratory reference
frame. In addition, each rotor interacts with a magnetic field
B applied along the z axis. The total potential energy of the
system can thus be written

U = − �
i=1

N−1�	�
j�i

N

�ijP2�ûi · û j�
 + V0��z�P2�ûi · x̂�

+
��

3�0
B2P2�ûi · ẑ�� . �10�

N is the number of rotors; �ij =��0 if i and j are nearest
neighbors, whereas �ij =0 otherwise. P2�� indicates the
second-rank Legendre polynomial and ûi is the unit vector
that defines the orientation of rotor i in the laboratory refer-
ence frame. V0 is the anchoring strength and ��z� a step
function such that �=1 if z=1 or z=�z, and �=0 otherwise.
Each rotor of the system can be considered the nematic di-
rector of the microdomain of dimensions �3, located at the
corresponding site of the lattice. The assumption that the
interaction among the nematic directors is regulated by the
Lebwohl-Lasher pair potential amounts to taking K1=K2
=K3=K and �=�K �9� while it is worth noting that the term
describing the interaction of each rotor at one of the two
surfaces with it is of the Rapini-Papoular form �10�. In such
a special confined nematic liquid crystal solvent, we may
think to dissolve a number of model cuboidal solutes whose
orientation is determined by Eq. �6�.

The behavior of the virtual nematic solvent at a specific
temperature can be simulated through the Metropolis Monte
Carlo technique �11�, with periodic boundary conditions in
the x and y directions only. The Saupe ordering matrices are
obtained as averages over the run, through Eqs. �3� and �4�.
This is what we have done employing the following typical
parameters: T=300 K, �=1 �m �9�, K=4�10−12 N �3�,
V0=10−4 J /m2 �3�, ��=10−6 �3�, and B=10 T �3�, with �x
=�y =10 and �z=20. Four types of solutes have been taken
into account, each one with b=3 Å and w=6 Å, while l=9,
12, 15, and 18 Å, respectively; that is, the four types of
solutes have b :w : l ratios, respectively, equal to 1:2:3, 1:2:4,
1:2:5, and 1:2:6. For each type of solute, a number of q
values has been considered in the range �0–100� kB �J/Å�. In
light of the above remarks on the role of the solute-solvent
coupling parameter q, it is fair to point out here that the
various values of q we have used in the simulations are to be
intended as referred to different solutes sharing circa the
same geometrical ratios but exhibiting a sort of intrinsically
different orientational affinity toward the solvent, rather than
the same solute at different temperatures.

In Fig. 2 we show the simulation results obtained. For
each type of solute, the set of data ��Sx�x�−Sy�y���q� ,
Sz�z��q�� has then been used separately to determine the di-

rector profile according to the procedure outlined above. Fig-
ure 3 shows the director distributions obtained, each one to
be compared with the exactly known distribution determined
through the Monte Carlo runs. The latter is consistent with
the directors at the surfaces aligned along x ��=0�, while
those in the bulk are aligned with the magnetic field ��
=90��.

For solutes that have dimensions in the ratio 1:2:3, it has
been proven quite important to include in the fitting process
data for the higher values of q, that is those corresponding to
a solute with a high orientational order. Otherwise, the opti-
mized value of �0 turned out to be too high, as is seen in

FIG. 2. Sx�x�-Sy�y� versus Sz�z� in bulk �black symbols�, and
averaged �white symbols� for the following type of solutes: 1:2:3
�squares�, 1:2:4 �circles�, 1:2:5 �triangles�, 1:2:6 �diamonds�.

FIG. 3. The director profile at the interior of the cell obtained by
the fitting process described in the text applied to the different types
of solutes. ”123 ext” means that we have included in the fitting
process Saupe ordering matrix data for the 1:2:3 type of solutes
with high values �up to 300 kB� of the quantity q. The inset shows
details for smaller values of z /L.
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Fig. 3 �confront the curve labeled “123” with that labeled
“123 ext”�. This can be understood since, as can be seen in
Fig. 2, the difference between the corresponding averaged
and bulk results increases with the orientational order of the
solute. Figure 3 suggests to restrict the experimental applica-
bility of the method to longer solutes, where realistic director
distributions have been obtained even employing sufficiently
low values of q. One interesting possibility could be offered
by dissolving long stiff polymers in nematic liquid crystals.
In fact, theories predict that long solutes are much more

orientationally ordered than the shorter molecules of the
nematic solvent �12�. Recent experiments �13� have con-
firmed these predictions, finding that a stiff long polymer is
essentially aligned with the director of the nematic medium.
NMR experiments are currently underway to test the pro-
posed methodology on real systems.
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